
Lecture notes for Abstract Algebra: Lecture 20

1 Maximal ideals and prime ideals

We deal in this section with two very important types of ideals: the prime ideals
and the maximal ideals.

Definition 1. Let R be a ring:

(1) Maximal ideal: A proper ideal I ⊂ R is called a maximal ideal if there
exists no other proper ideal J with I ⊂ J .

I ⊂ J, J ⊂ R ideal ⇒ J = R.

(2) Prime ideal: A proper ideal I ⊂ R is called a prime ideal if for any a and b
in R, if a · b is in I, then at least one of a and b is in I.

∀a, b ∈ R, a · b ∈ I ⇒ a ∈ I or b ∈ I.

Theorem 2. Let R be a commutative ring with identity and I an ideal in R. Then
I is a maximal ideal of R if and only if R/I is a field.

Proof. Let M be a maximal ideal in R. If R is a commutative ring, then R/M must
be a commutative ring. Clearly, 1 + M acts as an identity for R/M . We must show
that every nonzero element in the quotient R/M has an inverse. If a+M is a nonzero
element in R/M , then a /∈M . DefineI I to be the set {ra + x | r ∈ R , x ∈M}. We
will show that I is an ideal in R. The set I is non empty since 0a + 0 = 0 is in I. If
we have two elements r1a + x1 and r2a + x2 are two elements in I, then

(r1a + x1)− (r2a + x2) = (r1 − r2)a + (x1 − x2)

is in I. Also, for any r ∈ R it is true that rI ⊂ I hence, I is closed under multiplication
and satisfies the necessary conditions to be an ideal. Therefore, I is an ideal properly
containing M . Since M is a maximal ideal, I = R; consequently, by the definition of
I there must be an x ∈M and an element b ∈ R such that ab + x = 1 and

1 + M = ab + M = (a + M)(b + M) = ba + M.

Conversely, suppose that M is an ideal and R/M is a field. Since R/M is a field, it
must contain at least two elements: 0 + M = M and 1 + M . Hence, M is a proper
ideal of R. Let I be any ideal properly containing M . We need to show that I = R.
Choose a in I but not in M . Since a+M is a nonzero element in a field, there exists
an element b+M ∈ R/M such that (a+M)(b+M) = ab+M = 1+M . Consequently,
there exists an element x ∈M such that ab+x = 1 and 1 ∈ I. Therefore, r ·1 = r ∈ I
for all r ∈ R. Consequently, I = R.
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Proposition 3. Let R be a commutative ring with identity 1, where 1 6= 0. Then P
is a prime ideal in R if and only if R/P is an integral domain.

Proof. First let us assume that P is an ideal in R and R/P is an integral domain.
Suppose that a · b ∈ P . If a + P and b + P are two elements of R/P such that
(a + P )(b + P ) = 0 + P = P , then either a + P = P or b + P = P . This means that
either a ∈ P or b ∈ P , which shows that P must be prime.
Conversely, suppose that P is prime and (a+P )(b+P ) = ab+P = 0+P = P . Then
a · b ∈ P . If a /∈ P , then b must be in P by the definition of a prime ideal; hence,
b + P = 0 + P and R/P is an integral domain.

Corollary 4. Every maximal ideal in a commutative ring with identity is also a prime
ideal.

Example 5. Every ideal in Z is of the form nZ. The factor ring Z/nZ is an integral
domain only when n is prime. It is actually a field. Hence, the nonzero prime ideals
in Z are the ideals pZ, where p is prime. This example really justifies the use of the
word “prime” in our definition of prime ideals.

Example 6. (Ring of polynomials in two variables) Let K be a field and K[x, y] the
ring of polynomials in two variables x and y. That is:

K[x, y] = {
k∑

n=0

l∑
m=0

an,mx
nym | an,m ∈ K} = K[x] + yK[x, y].

Consider the ideal I = 〈y〉 generated by the polynomial y. The quotient ring

K[x, y]/I = K[x, y]/〈y〉 = (K[x] + yK[x, y])/y = K[x]

is an integral domain (since K is a field) but not a field (since most polynomials do
not have inverse in K[x]. As a consequence, the ideal I = 〈y〉 of K[x, y] is prime but
not maximal. On the other hand, in the ring of polynomials K[x] in one variable
(with a field K), the maximal and prime ideals coincide!
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