Lecture notes for Abstract Algebra: Lecture 20

1 Maximal ideals and prime ideals

We deal in this section with two very important types of ideals: the prime ideals and the maximal ideals.

Definition 1. Let R be a ring:
(1) Maximal ideal: A proper ideal $I \subset R$ is called a maximal ideal if there exists no other proper ideal J with $I \subset J$.

$$
I \subset J, \quad J \subset R \quad \text { ideal } \quad \Rightarrow \quad J=R
$$

(2) Prime ideal: A proper ideal $I \subset R$ is called a prime ideal if for any a and b in R, if $a \cdot b$ is in I, then at least one of a and b is in I.

$$
\forall a, b \in R, \quad a \cdot b \in I \quad \Rightarrow \quad a \in I \quad \text { or } \quad b \in I
$$

Theorem 2. Let R be a commutative ring with identity and I an ideal in R. Then I is a maximal ideal of R if and only if R / I is a field.

Proof. Let M be a maximal ideal in R. If R is a commutative ring, then R / M must be a commutative ring. Clearly, $1+M$ acts as an identity for R / M. We must show that every nonzero element in the quotient R / M has an inverse. If $a+M$ is a nonzero element in R / M, then $a \notin M$. DefineI I to be the set $\{r a+x \mid r \in R, x \in M\}$. We will show that I is an ideal in R. The set I is non empty since $0 a+0=0$ is in I. If we have two elements $r_{1} a+x_{1}$ and $r_{2} a+x_{2}$ are two elements in I, then

$$
\left(r_{1} a+x_{1}\right)-\left(r_{2} a+x_{2}\right)=\left(r_{1}-r_{2}\right) a+\left(x_{1}-x_{2}\right)
$$

is in I. Also, for any $r \in R$ it is true that $r I \subset I$ hence, I is closed under multiplication and satisfies the necessary conditions to be an ideal. Therefore, I is an ideal properly containing M. Since M is a maximal ideal, $I=R$; consequently, by the definition of I there must be an $x \in M$ and an element $b \in R$ such that $a b+x=1$ and

$$
1+M=a b+M=(a+M)(b+M)=b a+M
$$

Conversely, suppose that M is an ideal and R / M is a field. Since R / M is a field, it must contain at least two elements: $0+M=M$ and $1+M$. Hence, M is a proper ideal of R. Let I be any ideal properly containing M. We need to show that $I=R$. Choose a in I but not in M. Since $a+M$ is a nonzero element in a field, there exists an element $b+M \in R / M$ such that $(a+M)(b+M)=a b+M=1+M$. Consequently, there exists an element $x \in M$ such that $a b+x=1$ and $1 \in I$. Therefore, $r \cdot 1=r \in I$ for all $r \in R$. Consequently, $I=R$.

Proposition 3. Let R be a commutative ring with identity 1 , where $1 \neq 0$. Then P is a prime ideal in R if and only if R / P is an integral domain.

Proof. First let us assume that P is an ideal in R and R / P is an integral domain. Suppose that $a \cdot b \in P$. If $a+P$ and $b+P$ are two elements of R / P such that $(a+P)(b+P)=0+P=P$, then either $a+P=P$ or $b+P=P$. This means that either $a \in P$ or $b \in P$, which shows that P must be prime.
Conversely, suppose that P is prime and $(a+P)(b+P)=a b+P=0+P=P$. Then $a \cdot b \in P$. If $a \notin P$, then b must be in P by the definition of a prime ideal; hence, $b+P=0+P$ and R / P is an integral domain.

Corollary 4. Every maximal ideal in a commutative ring with identity is also a prime ideal.

Example 5. Every ideal in \mathbb{Z} is of the form $n \mathbb{Z}$. The factor ring $\mathbb{Z} / n \mathbb{Z}$ is an integral domain only when n is prime. It is actually a field. Hence, the nonzero prime ideals in \mathbb{Z} are the ideals $p \mathbb{Z}$, where p is prime. This example really justifies the use of the word "prime" in our definition of prime ideals.

Example 6. (Ring of polynomials in two variables) Let K be a field and $K[x, y]$ the ring of polynomials in two variables x and y. That is:

$$
K[x, y]=\left\{\sum_{n=0}^{k} \sum_{m=0}^{l} a_{n, m} x^{n} y^{m} \mid a_{n, m} \in K\right\}=K[x]+y K[x, y] .
$$

Consider the ideal $I=\langle y\rangle$ generated by the polynomial y. The quotient ring

$$
K[x, y] / I=K[x, y] /\langle y\rangle=(K[x]+y K[x, y]) / y=K[x]
$$

is an integral domain (since K is a field) but not a field (since most polynomials do not have inverse in $K[x]$. As a consequence, the ideal $I=\langle y\rangle$ of $K[x, y]$ is prime but not maximal. On the other hand, in the ring of polynomials $K[x]$ in one variable (with a field K), the maximal and prime ideals coincide!

